Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(10): e47772, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021820

RESUMO

Hourglass bladder is a definition used to describe a particular configuration of the urinary bladder, divided into two compartments, upper and lower, communicating through a narrowed segment resembling an hourglass. It may be due to various conditions, such as bladder diverticula, bladder neck obstruction, neurogenic bladder, or other abnormalities. Congenital hourglass bladder is an extremely rare anomaly. To the best of our knowledge, only 24 cases have been reported. We present the case of a 2-year-old male, probably the youngest patient with congenital hourglass bladder ever recorded. We aim to increase knowledge about the incidence of this likely underdiagnosed condition and its management and stress the importance of long-term follow-up.

2.
J Am Soc Nephrol ; 34(6): 1105-1119, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995132

RESUMO

SIGNIFICANCE STATEMENT: Congenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available. BACKGROUND: Congenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification. METHODS: We performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction ( n =321), ureterovesical junction obstruction/congenital megaureter ( n =178), and COU not otherwise specified (COU-NOS; n =234). RESULTS: We identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU. CONCLUSIONS: We established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis.


Assuntos
Hidronefrose , Obstrução Ureteral , Refluxo Vesicoureteral , Humanos , Variações do Número de Cópias de DNA , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Refluxo Vesicoureteral/diagnóstico , Refluxo Vesicoureteral/genética , Pelve Renal/patologia
4.
Nat Genet ; 51(1): 117-127, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578417

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (that is, affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; and vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12 and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3 and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified TBX6 as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.


Assuntos
Variações do Número de Cópias de DNA/genética , Rim/anormalidades , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Deleção Cromossômica , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino
5.
Cardiovasc Res ; 69(3): 736-45, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16213474

RESUMO

OBJECTIVE: Dysregulation of myocardial metalloproteinases (MMPs) is now regarded as an early contributory mechanism for the initiation and progression of heart failure. Doxorubicin is a strongly cardiotoxic anticancer drug. This study investigates the effects of doxorubicin on myocardial MMP-2 and MMP-9 activation. METHODS: After pre-treatment with or without carvedilol or dexrazoxane, we exposed H9c2 cardiomyocytes to doxorubicin to evaluate reactive oxygen species (ROS) formation and MMP-2 and MMP-9 expression and activation. To investigate the signaling pathways leading to doxorubicin-induced MMP activation, we also examined the phosphorylation of three members of the MAPK family (ERK1/2, p38, and JNK), the effects of selective inhibitors of ERK1/2, p38, and JNK on MMP transcription and activity, the transcription of the NAD(P)H oxidase subunit Nox1, and the effects of the NAD(P)H oxidase inhibitor DPI on MMP activation. RESULTS: Doxorubicin induces a significant increase in ROS formation and a rapid increase of MMP expression and activation. Pre-treatment with carvedilol or dexrazoxane prevented these effects. We also found that p38 is the MAPK that is mainly responsible for MMP-9 activation through an NAD(P)H-independent mechanism. ERK and JNK modulate the transcription of the NAD(P)H oxidase subunit Nox1, while the JNK/ERK NAD(P)H oxidase cascade is an important pathway that mediates doxorubicin signaling to MMP-2. Inhibition of NAD(P)H oxidase attenuates the increase in MMP-2, but augments the doxorubicin-induced increase in MMP-9. CONCLUSIONS: Enhancement of MMP-2 and MMP-9 in cardiac myocytes in response to doxorubicin is mediated by the cooperation of ERK, JNK, and p38 kinase pathways, most of which are redox dependent.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Metaloproteinases da Matriz/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Miócitos Cardíacos/enzimologia , NADPH Oxidases/fisiologia , Antracenos/farmacologia , Antioxidantes/farmacologia , Western Blotting , Carbazóis/farmacologia , Carvedilol , Catecolaminas/farmacologia , Linhagem Celular , Ativação Enzimática , Flavonoides/farmacologia , Humanos , Imidazóis/farmacologia , Imidazolinas/farmacologia , Janus Quinase 1 , Sistema de Sinalização das MAP Quinases , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , NADPH Oxidases/antagonistas & inibidores , Propanolaminas/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Razoxano/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
6.
Biochem Biophys Res Commun ; 335(1): 188-96, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16055083

RESUMO

Up-regulation of LOX-1 is implicated in apoptosis in both vascular smooth muscle cells and in endothelial cells. We examined the effects of doxorubicin on LOX-1 expression in H9c2 cardiomyocytes and the role played by LOX-1 up-regulation in doxorubicin-induced apoptosis. Reactive oxygen species (ROS) formation was assessed by DCF flow cytometry. LOX-1 mRNA and protein expression was assessed by RT-PCR and Western blotting. Apoptosis was evaluated by flow cytometry with annexin/PI double staining. Doxorubicin-induced LOX-1 expression in a concentration- and time-dependent fashion. The doxorubicin-induced ROS formation and the LOX-1 expression were significantly attenuated by pre-treatment with antioxidants. By exposing cells that had been pre-treated with doxorubicin to oxidized-LDL, a LOX-1 agonist, in the presence or in the absence of k-carrageenan, a LOX-1 receptor antagonist, we documented that doxorubicin-induced LOX-1 expression plays a role in inducing apoptosis. These findings suggest that LOX-1 up-regulation is redox-sensitive and may contribute to doxorubicin-induced cardiotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Receptores de LDL/metabolismo , Acetilcisteína/farmacologia , Animais , Atenolol/farmacologia , Carbazóis/farmacologia , Carvedilol , Linhagem Celular , Citometria de Fluxo , Radicais Livres/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/citologia , Propanolaminas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Razoxano/farmacologia , Receptores de LDL/genética , Receptores de LDL Oxidado , Receptores Depuradores Classe E , Regulação para Cima/efeitos dos fármacos
7.
J Mol Cell Cardiol ; 37(4): 837-46, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15380674

RESUMO

The clinical use of doxorubicin, a highly active anticancer drug, is limited by its severe cardiotoxic side effects. Increased oxidative stress and apoptosis have been implicated in the cardiotoxicity of doxorubicin. Carvedilol is an adrenergic blocking agent with potent anti-oxidant activity. In this study we investigated whether carvedilol has protective effects against doxorubicin-induced free radical production and apoptosis in cultured cardiac muscle cells, and we compared the effects of carvedilol to atenolol, a beta-blocker with no anti-oxidant activity. Reactive oxygen species (ROS) generation in cultured cardiac muscle cells (H9c2 cells) was evaluated by flow cytometry using dichlorofluorescein (DCF) and hydroethidine (HE). Apoptosis was assessed by measuring annexin V-FITC/propidium iodide double staining, DNA laddering, levels of expression of the pro-apoptotic protein Bax-alpha and the anti-apoptotic protein Bcl-2, and caspase-3 activity. Pre-treatment with carvedilol significantly attenuated the doxorubicin-induced increases in DCF (P < 0.001 compared to cells not pre-treated with carvedilol) and HE (P < 0.01) fluorescence. Doxorubicin increased the fraction of annexin V-FITC-positive fluorescent cells, while pre-treatment with carvedilol reduced the number of positive fluorescent cells (P < 0.01). Doxorubicin-induced DNA fragmentation to a clear ladder pattern, while carvedilol prevented DNA fragmentation. Doxorubicin-induced a fall in mRNA expression of the anti-apoptotic Bcl-2 and an increase in the expression of the pro-apoptotic Bax-alpha. Carvedilol pre-treatment blunted both the decrease of Bcl-2 (P < 0.01) and the increase of Bax-alpha mRNA expression (P < 0.01). Caspase-3 activity significantly increased after the addition of doxorubicin. Concurrently, carvedilol partially inhibited the doxorubicin-induced activation of caspase-3 (P < 0.01). Atenolol did not produce any effect in preventing doxorubicin-induced ROS generation and cardiac apoptosis. Our results suggest that carvedilol is potentially protective against doxorubicin cardiotoxicity by decreasing free radical release and apoptosis in cardiomyocytes.


Assuntos
Antibióticos Antineoplásicos/antagonistas & inibidores , Apoptose , Carbazóis/farmacologia , Doxorrubicina/antagonistas & inibidores , Radicais Livres/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Propanolaminas/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Atenolol/farmacologia , Carvedilol , Caspase 3 , Caspases/análise , Caspases/metabolismo , Células Cultivadas , Fragmentação do DNA , Doxorrubicina/toxicidade , Expressão Gênica , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...